Sistema di controllo fumana delle torri di raffreddamento

Controllo fumana / Ibride

LA FUMANA INVERNALE NELLE TORRI DI RAFFREDDAMENTO

Il principio di funzionamento degli apparecchi per il raffreddamento evaporativo dell'acqua e' noto; il fluido da raffreddare (acqua) viene costretto ad un intimo contatto con un consistente flusso d'aria. Una parte di acqua evapora, e viene assorbita ed asportata dall'aria. All'uscita della torre l'aria e' notevolmente piu' calda, con un maggiore contenuto di acqua e con un punto di rugiada piu' elevato. Soprattutto nei mesi invernali, quando la temperatura esterna si abbassa, non appena il flusso d'aria, calda e satura di umidita', viene a contatto con l'ambiente esterno, subisce un brusco raffreddamento; quando la temperatura del flusso scende sotto quella di rugiada, una parte dell'acqua contenuta nella stessa condensa dando luogo a quel fenomeno visivo caratteristico che e' il pennacchio di vapore; le goccioline piu' pesanti precipitano, causando un modesto fenomeno pioggia.



COME SI PUO' CONTROLLARE

La premessa sulla formazione del fenomeno (seppur modesta e incompleta) e' stata necessaria per poter meglio illustrare i principi che presiedono al sistema di controllo che proponiamo.
In prima istanza e' stato preso in considerazione un sistema di post-riscaldo della fumana in uscita, ottenuto per mezzo di uno scambiatore acqua/aria posto sullo scarico della fumana stessa; il fluido riscaldante sarebbe stato la stessa acqua da raffreddare, ovviamente utilizzata prima del raffreddamento.
Lo scambiatore posto sullo scarico crea una perdita di carico lato aria costante e costringe i ventilatori a maggiori consumi anche in estate quando, in teoria, non servirebbe. Dovrebbe quindi necessariamente avere una superficie totale contenuta (2 massimo 4 ranghi).
I problemi sono di vario genere e cercheremo di sintetizzarli.
a) Anche in inverno con aria a 0° C, la temperatura della fumana e' compresa tra la temperatura di ingresso acqua e quella di uscita. (Vedere l'andamento delle curve di saturazione sul diagramma psicometrico). Il contributo di calore che viene ceduto alla fumana e' modesto e quindi modesto e' l'innalzamento della temperatura ed il distacco della linea di saturazione. L'unico effetto reale e' l'opposizione fisica all'uscita della fumana, la cui compattezza viene cosi' diminuita e ne viene favorito l'assorbimento in atmosfera.
b) Come comportarci con lo scambiatore? Se si fa in modo che l'acqua permanga nel suo interno anche con pompe ferme, ci si espone al pericolo di rotture causate dal gelo (il tempo di congelamento dell'acqua nei tubi dello scambiatore e' decisamente inferiore a quello dell'acqua nel resto dell'impianto, tubazioni principali comprese). Se si prevede lo svuotamento dello scambiatore ad ogni fermata e' inevitabile l'ingresso di ossigeno e quindi va considerato il rischio di corrosione; uno scambiatore in acciaio inossidabile sarebbe perfetto ma decisamente costoso.
La nostra scelta si e' quindi orientata diversamente. Partendo dal presupposto che nelle stagioni fredde la quantita' di aria necessaria per lo smaltimento del calore e' inferiore, abbiamo messo a punto il seguente sistema:
- penalizzando in inverno i ventilatori, che quindi funzionerebbero sempre al 100 percento abbassiamo la temperatura di rugiada della fumana con immissione controllata di una certa quantita' di aria esterna.
- con l'abbassamento della temperatura di rugiada si riduce di circa il 50 percento la differenza di temperatura tra l'aria esterna e la fumana e si aumentano i tempi di raffreddamento della fumana stessa.
Buona parte della condensazione dovuta al brusco raffreddamento della fumana avviene all'interno del plenum che e' parte della torre.
Il fabbisogno di aria esterna e' tanto maggiore quanto minore e la temperatura esterna, cioe' nelle condizioni dove minore e' il fabbisogno di aria per la torre. L'ingresso di aria esterna e' controllato da serrande servocomandate.
In pratica il sistema puo' essere vantaggiosamente applicato su apparecchi di raffreddamento evaporativo, del tipo a tiraggio forzato, con ventilatore in aspirazione.
Il plenum viene previsto se possibile tra il sistema di distribuzione dell'acqua ed i separatori di gocce, ovvero tra i separatori ed il ventilatore e' dotato di serrande servocomandate. Durante i mesi estivi le serrande rimangono chiuse ed escluse dal sistema; nei mesi invernali un termostato proporzionale che controlla la temperatura dell'acqua comandera' l'apertura delle serrande; completamente aperte provvedera', se necessario, anche all'arresto proporzionale dei ventilatori.
Certamente il sistema puo' essere arricchito con degli scambiatori acqua aria sulle serrande In questo caso la differenza di temperatura tra acqua da raffreddare e aria esterna e' piu' consistente ed i vantaggi sarebbero:
a) innalzamento della temperatura della fumana, con la stessa temperatura di rugiada (allontanamento dalla curva di saturazione);
b) asportazione a secco di calore che quindi non dovra' essere asportato per mezzo di evaporazione.
Purtroppo pero' rimangono irrisolti i problemi di gelo e di corrosione prima menzionati.



IL FENOMENO DELLA FUMANA INVERNALE NELLE TORRI DI RAFFREDDAMENTO

Come tutti gli operatori del settore sanno le apparecchiature preposte al recupero termico dell'acqua di raffreddamento industriale, note come torri di raffreddamento o torri evaporative, consentono, a costi contenuti, di raffreddare anche notevoli volumi di acqua per mezzo dell'evaporazione di una piccola percentuale (di solito al 2-3 dell'acqua stessa.
L'evaporazione viene favorita da un considerevole volume di aria, mossa da ventilatori, di solito posti alla sommita' delle torri, che entra in intimo contatto con l'acqua da raffreddare.
Il flusso d'aria in uscita dai ventilatori e' solitamente piu' caldo e molto piu' umido dell'atmosfera circostante.
Certi paesaggi sono ormai caratterizzati dal folcloristico ma innocuo pennacchio di aria satura che fuoriesce da torri di raffreddamento installante al servizio di impianti industriali.
Il fenomeno, che ripetiamo e' assolutamente innocuo, mentre in estate presenta aspetti decisamente marginali, durante la stagione fredda puo' essere causa di contenzioso con i confinanti che vedono i loro immobili continuamente aggrediti dall'umidita' o i loro piazzali resi viscidi e gelati, con le autorita' preposte alla tutela della circolazione stradale nei casi in cui il fenomeno interessi appunto le vie di comunicazione e piu' recentemente anche le autorita' preposte alla tutela ambientale che sempre piu' spesso hanno tendenza a valutare in modo non sempre positivo l'impatto che il vistoso fenomeno produce sul territorio.
La domanda che l'ufficio tecnico della Boldrocchi T.E. si e' posto e' se sia possibile, a costi accettabili, eliminare o almeno ridurre il fastidioso fenomeno della fumana invernale sulle torri di raffreddamento. La risposta e' oggi, in buona misura, positiva.
Ridurre drasticamente il fenomeno e' possibile ed e' relativamente poco costoso sia come investimento sia come costi di esercizio.
L'originale dispositivo che consente un parziale controllo della fumana invernale si basa su principi noti e riconosciuti, non prevede ostruzioni allo scarico dei ventilatori (che penalizzerebbe la torre durante i mesi estivi) e non necessita di energia aggiuntiva a quella normalmente richiesta per il normale funzionamento.
Purtroppo raramente puo' essere applicato alle torri esistenti, mentre gia' da oggi puo' essere richiesto su tutte le torri che la Boldrocchi T.E. produce.




Hai bisogno di un'offerta o consulenza sulle nostre torri di raffreddamento?

contattaci

PIÙ DI 1000 PROGETTI REALIZZATI IN TUTTO IL MONDO


 

Ricerchiamo agenti per le zone libere!

contattaci
Cdweb _ Web Agency